SCHAEFFLER

Ball bearings for the Food Industry

Deep groove ball bearings, radial insert ball bearings, plastic housing units

Technical Product Information

Foreword

Schaeffler products have proved themselves over many years even under critical and problematic application conditions.

In addition to the specific environmental influences, legal or religious requirements in the food and beverage industry also call for the use of special high-quality solutions. We now offer an extended range of corrosion-resistant products for the food industry, to satisfy these high demands on corrosion protection, reliability and service life as well as the specific lubricant requirements:

- deep groove ball bearings
- radial insert ball bearings and housing units

Specific lubricants are used in the products that meet the special requirements and approval regulations such as NSF H1. These lubricants are non-toxic and neutral in taste and odour. They are suitable for applications where contact between food and lubricant cannot always be ruled out.

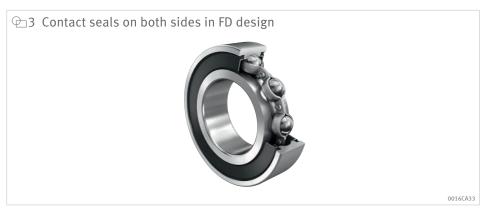
The grease also contains only allergen-free ingredients in accordance with Regulation (EC) 1169/2011 and is therefore free of cereals containing gluten, nuts and milk, for example. In addition, the grease does not contain any components comprising animal or genetically modified organisms.

All other bearing components are, of course, also designed to meet the standards of the food industry. The designations of bearings for the food industry are distinguished from the standard range by the suffix FD.

□2 Areas of application (image top right, source: Krones AG)

Contents

1	Deep g	groove ball bearings							
	1.1	Bearing design	6						
	1.2	Corrosion-resistant materials	7						
	1.3	Lubrication							
	1.4	Sealing	9						
	1.5	Prefixes and suffixes							
	1.6	Temperature range							
	1.7	Internal clearance	10						
	1.8	Dimensions, tolerances							
	1.9	Design and safety guidelines	11						
		1.9.1 Load carrying capacity							
		1.9.2 Compensation of angular misalignments1.9.3 Speeds							
	1.10	1.9.3 Speeds							
	1.10	Minimum load							
	1.11	Design of bearing arrangements							
	1.12	Mounting and dismounting							
	1.13	Further information							
	1.14	Product tables							
	1.10	1.15.1 Explanations							
		1.15.2 Deep groove ball bearings, single row							
2	Radial	Radial insert ball bearings							
	2.1	Bearing design							
	2.2	Corrosion-resistant materials							
	2.3	Lubrication							
	2.4	Sealing	26						
	2.5	Suffixes	26						
	2.6	Temperature range	27						
	2.7	Internal clearance	27						
	2.8	Dimensions, tolerances	28						
	2.9	Design and safety guidelines	29						
		2.9.1 Load carrying capacity							
		2.9.2 Compensation of angular misalignments2.9.3 Speeds							
	2.10	2.9.3 Speeds							
	2.10								
	2.11								
		Design of bearing arrangements							
	2.13 2.14	Mounting and dismounting							
	2.14	Product tables							
	2.10	2.15.1 Explanations							


		2.15.2 2.15.3	Radial insert ball bearings, with grub screw Radial insert ball bearings, with eccentric locking collar					
3	Plastic	housing u	nits					
	3.1	Housing	lesign	42				
	3.2	Accessories						
	2.2	3.2.1	Bearing end caps					
		3.2.2	Back Seal component					
		3.2.3	Temperature range	45				
	3.3	Materials	, corrosion protection, food grade	45				
	3.4	Lubricatio	on	46				
	3.5	Sealing		46				
	3.6	Suffixes .		46				
	3.7	Dimensions, tolerances						
	3.8	Design ar	nd safety guidelines	47				
		3.8.1	Load carrying capacity					
		3.8.2	Compensation of angular misalignments					
		3.8.3	Speeds	47				
	3.9	Dimensio	ning	47				
	3.10	Minimum load						
	3.11	Mounting and dismounting						
	3.12	Further in	formation	48				
	3.13	Product ta	ables	49				
		3.13.1	Explanations					
		3.13.2	Plummer block housing units, with long base, with grub screw					
		3.13.3	Plummer block housing units, with long base, with eccentric locking collar					
		3.13.4	Plummer block housing units, with short base, with grub screw					
		3.13.5	Plummer block housing units, with short base, with eccentric locking collar					
		3.13.6	Two-bolt flanged housing units, narrow version, with grub screw					
		3.13.7	Two-bolt flanged housing units, narrow version, with eccentric locking collar					
		3.13.8	Two-bolt flanged housing units, wide version					
		3.13.9 3.13.10	Four-bolt flanged housing units, with grub screw Four-bolt flanged housing units, with eccentric locking collar					
		0.10.10	ו טעו-שטונ וזמווצפע ווטעצוווצ עווונג, אונוו פנגפוונווג וטגאווצ גטונמו	00				

1 Deep groove ball bearings

Deep groove ball bearings in FD design are optimised for use in the food industry. They correspond in their structure to single row standard deep groove ball bearings but are specially adapted in relation to:

- suitable materials for the food industry
- significantly higher corrosion and media resistance

Single row deep groove ball bearings

Bearing series:

- S60..-FD
- S62..-FD
- S63..-FD

1.1 Bearing design

Single row deep groove ball bearings are the most frequently used type of rolling bearing. They are produced in numerous sizes and designs and are particularly economical. Due to their low frictional torque, they are also suitable for high speeds.

Due to the raceway geometry, the use of balls as rolling elements and the design without a filling slot, deep groove ball bearings can support axial loads in both directions as well as radial loads.

The angular adjustment facility of single row deep groove ball bearings is limited, so the bearing positions must be well aligned.

Special characteristics

Operation even under difficult conditions is ensured by seals that are matched to the application and the use of food-grade greases.

- bearing rings, cages and balls made from high-grade steel
- highly effective contact seal
- lubrication with food-grade grease

Design variants

Deep groove ball bearings in FD design for the food industry are available in the following variant:

• single row, contact seals on both sides

If a longer operating life is also necessary, ceramic rolling elements can replace the steel rolling elements in deep groove ball bearings.

1.2 Corrosion-resistant materials

The bearing rings, cages and rolling elements are made from high-grade steel.

The materials used in series FD are resistant to moisture, contaminated water, salt spray mist and weak alkaline or weak acidic cleaning agents.

By agreement, deep groove ball bearings for the food industry are also available as hybrid bearings with ceramic rolling elements made from silicon nitride (Si_3N_4) .

■1 Steels used

Bearing components	Designation	Material number		
	ISO 683-17:2000	GB/T 1220-2007	AISI	EN 10088-3
Bearing rings	X65Cr13	-	420D	1.4037
	-	95Cr18	-	-
Rolling elements	X105CrMo17		440C	1.4125
	_	95Cr18	-	-
Cage	X5CrNi18-10	-	304	1.4301

We reserve the right to make technical changes, including material changes, as part of the ongoing development.

Media resistance

In the food industry in particular, the resistance of the material in relation to various cleaning agents is of increasing importance.

Medium		Concentration	X65Cr13		X5CrNi18-10		X105CrMo17		95Cr18	
		%	+20 °C	+80 °C	+20 °C	+80 °C	+20 °C	+80 °C	+20 °C	+80 °0
Hydrochloric acid	HCl	0,1	_	-	+	+	-	-	_ 1)	_ 1)
		1	_	-	(+)	-	-	-	_ 1)	_ 1)
		18	-	-	-	-	-	-	_ 1)	_ 1)
Hydrofluoric acid	HF	1	_	-	-	-	-	-	_ 1)	_ 1)
		5	_ 1)	-	_ 1)	-	_ 1)	-	_ 1)	_ 1)
Sulphuric acid	H ₂ SO ₄	1	_	-	+	-	-	-	_ 1)	_ 1)
		10	_	-	(+)	-	-	-	_ 1)	_ 1)
		96	(+)	-	+	(+)	-	-	_ 1)	_ 1)
Sulphurous acid	H ₂ SO ₃	1	-	-	+	+	-	-	-	-
Nitric acid	HNO ₃	5	-	-	+	+	-	-	(-)	(+)
		25	+	(+)	+	+	+	(+)	+	+
		65	+	(+)	+	+	+	(+)	+	+
Phosphoric acid	H ₃ PO ₄	1	+	+	+	+	+	+	+	+
		10	-	-	+	+	(+)	+	(+)	(+)
		85	+	-	+	+	+	-	+	+
Formic acid	НСООН	5	-	-	+	+	-	-	-	-
		25	-	-	+	+	-	-	-	-
Acetic acid	CH ₃ COOH	5	(+)	-	+	+	+	-	(+)	-
		25	(+)	-	+	+	+	-	(+)	-
Citric acid		5	(+)	-	+	+	+	+	(+)	(+)
		25	(+)	-	+	+	-	-	(+)	(-)
Chloroacetic acid		5	(+)	-	+	+	(+)	-	(+)	-
Sodium chloride	NaCl	10	(-)	(-)	+	+	(-)	(-)	2)	2)
Sea water		4	(-)	(-)	+	+	(-)	(-)	+ 1)	2)

■2 Resistance to media

1 | Deep groove ball bearings

Medium		Concentration	X65Cr13		X5CrNi18-10		X105CrMo17		95Cr18	
		%	+20 °C	+80 °C	+20 °C	+80 °C	+20 °C	+80 °C	+20 °C	+80 °C
Distilled water		_	+	+	+	+	+	+	+ 1)	+ 1)
Ammonium hydrox-	NH ₄ OH	1	+	+	+	+	+	+	+ 1)	+ 1)
ide		10	+	+	+	+	+	+	+ 1)	+ 1)
Potassium hydroxide	КОН	0,1	+	+	+	+	+	+	+ 1)	+ 1)
solution		1	+	+	+	+	+	+	+ 1)	+ 1)
		10	+	+	+	+	+	+	+ 1)	+ 1)
Sodium hypochlorite solution		1	2)	(-)	+ 1)	+	2)	(-)	(+)	(-)
Hydrogen peroxide	$H_{2}O_{2}$	5	+	+	+	+	+	+	2)	2)

_	Not resistant
(-)	Barely resistant
(+)	Moderately resistant
+	Resistant

¹⁾ Not tested. Estimate generated from remaining test series.

²⁾ Not tested. No estimate possible.

1.3 Lubrication

Food-grade grease application

The high-quality grease used for lubrication is approved for food applications to category NSF H1. The grease is particularly suitable for use in the food industry and meets the quality requirements of FDA 21 CFR 178.3570 in full. Furthermore, the grease is halal and kosher-certified.

A lubricant of class NSF H1 is suitable for applications in which incidental contact between food and lubricant may occur and is unavoidable by technical measures. Such lubricants must be non-toxic and neutral in taste and odour.

The grease also contains only allergen-free ingredients in accordance with Regulation (EC) 1169/2011 and is therefore free of cereals containing gluten, nuts and milk, for example. In addition, the grease does not contain any components comprising animal or genetically modified organisms.

The halal and kosher certification of the lubricant used confirms that the strict halal and kosher criteria are also met in relation to the processing and ingredients of the bearings. These dietary laws of the Muslim and Jewish population not only apply to the actual food and beverages, but also to the machines and environment during manufacture.

Lubrication of bearings

The bearings are greased using an aluminium complex soap grease with food applications approval to NSF H1, which is characterised by very good water and chemical resistance. The grease filling is measured so that it is sufficient for the entire life of the bearing. As a result, these bearings are generally maintenance-free.

Do not wash greased bearings out prior to mounting. If mounting is carried out using thermal tools, the bearings should be heated to a maximum temperature of +80 °C, taking account of the grease filling and seal material. If higher heating temperatures are required, it must be ensured that the permissible upper temperature limits for greases and seals are observed.

Schaeffler recommends the use of induction heating devices in accordance with MH 1, Mounting Handbook for heating purposes.

1.4 Sealing

As standard, bearings for the food industry are sealed on both sides with contact seals made from NBR. These seals are elastomer lip seals with a sheet steel reinforcement (suffix 2RSR or 2RS).

■3 Seal type

Seal RSR

Seal RS

single piece, sheet steel washer with vulcanised and axially preloaded seal lip made from NBR

In the case of direct exposure to spray water, prior consultation with Application Engineering is required. For any queries regarding resistance to specific media, please consult Application Engineering.

1.5 Prefixes and suffixes

☐ 4 Prefixes and suffixes

Prefix	Suffix	Description	Design
S	-	High-grade steel	Standard
HC	-	Hybrid bearing with ceramic balls made from ${\rm Si}_3{\rm N}_4$	By agreement
_	2RS	Axial contact seal on both sides (lip seal)	Standard
		Sealing material NBR	
_	2RSR	Radial contact seal on both sides (lip seal)	
		Sealing material NBR	
_	FD	Suitable for applications in the food industry	
_	C2	Radial internal clearance C2 (smaller than normal)	Ву
_	C3	Radial internal clearance C3 (larger than normal)	agreement
_	C4	Radial internal clearance C4 (larger than C3)	

1.6 Temperature range

Deep groove ball bearings with seals can be used at operating temperatures of -30 °C to +100 °C, restricted by the grease.

1.7 Internal clearance

Deep groove ball bearings of basic design are manufactured as standard with the radial internal clearance CN (normal). CN is not stated in the designation.

The bearings are also available by agreement with the smaller internal clearance C2 and with the larger internal clearance C3 and C4.

The values for radial internal clearance correspond to DIN 620-4:2004 (ISO 5753-1:2009). These are valid for bearings which are free from load and measurement forces, i.e. without elastic deformation.

d		C2		CN		C3		C4		C5	
		(Grouj	(Group 2)		(Group N)		(Group 3)		(Group 4)		(Group 5)
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
mm	mm	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm
6	10	0	7	2	13	8	23	14	29	-	-
10	18	0	9	3	18	11	25	18	33	-	-
18	24	0	10	5	20	13	28	20	36	-	-
24	30	1	11	5	20	13	28	23	41	-	-
30	40	1	11	6	20	15	33	28	46	-	-
40	50	1	11	6	23	18	36	30	51	-	-

■5 Radial internal clearance

1.8 Dimensions, tolerances

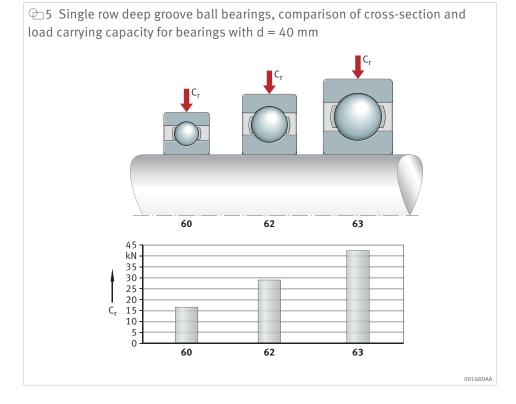
The main dimensions of single row deep groove ball bearings correspond to DIN 625-1:2011. Nominal dimensions of single row deep groove ball bearings are listed in the product table \geq 20|1.15.2.

Chamfer dimensions

The limiting dimensions for chamfer dimensions correspond to DIN 620-6:2004. For an overview and limiting values, please refer to Catalogue HR 1, Rolling Bearings. Nominal dimensions for the chamfer dimension are listed in the product table \geq 20|1.15.2.

Tolerances

The tolerances for the dimensional and running accuracy of deep groove ball bearings correspond to tolerance class Normal in accordance with ISO 492:2014.


1.9 Design and safety guidelines

1.9.1 Load carrying capacity

Radial load carrying capacity

The balls are in contact with the raceways at one point only. Under purely radial load, the contact points between the rolling elements and raceways lie at the centre of the raceway. As a result, the connection between the contact points passes through the radial plane, i.e. the optimum load direction is a purely radial load.

The load carrying capacity is dependent on the bearing series and the size of the ball set in the deep groove ball bearings. As a result, the deep groove ball bearing series 60 with a smaller bearing cross-section has a lower load carrying capacity than the standard series 62 with the same dimensions relative to the bore diameter d and a larger ball set. The heavy bearing series 63 with the largest ball set is suitable for even higher loads when used for the same bore diameter.

Axial load carrying capacity

Due to the deep raceway grooves in the bearing rings and the narrow osculation between the raceway grooves and the balls, the bearings can support axial loads in both directions. The axial load carrying capacity is dependent, for example, on the bearing size, the internal construction and the operating clearance. If the axial load is too high, however, this can increase the running noise and considerably reduce the operating life of the bearings.

If there is any uncertainty regarding the axial load carrying capacity of the bearings, please consult Schaeffler.

1.9.2 Compensation of angular misalignments

Single row deep groove ball bearings are only suitable for compensating static angular misalignments to a very limited extent. As a result, the bearing positions must be well aligned. Misalignments shorten the operating life, as they place an additional strain on the bearing. In order to keep these loads at a low level, only small adjustment angles are permissible for deep groove ball bearings as a function of the load.

Series	Adjustment	angle for low loads	Adjustment angle for high loads				
	from	to	from	to			
	1	1	1	1			
60	2	6	5	10			
62	5	10	8	16			
63	5	10	8	16			

1.9.3 Speeds

The product tables give the limiting speed n_{G} .

The limiting speed n_G is the kinematically permissible speed of the bearing. Even under favourable mounting and operating conditions, this value should only be exceeded following prior consultation with Schaeffler.

If the application renders it necessary to exceed the specified speed limits, please contact Schaeffler Application Engineering.

1.10 Dimensioning

Equivalent dynamic bearing load

The basic rating life equation $L = (C_r/P)^p$ used in the dimensioning of bearings under dynamic load assumes a load of constant magnitude and direction. In radial bearings, this is a purely radial load F_r . If such a load is present, the bearing load F_r is used in the rating life equation for P (P = F_r).

If a load of constant magnitude and direction is not present, a constant radial force must first be determined for the rating life calculation that, in relation to the rating life, represents an equivalent load. This force is known as the equivalent dynamic bearing load P.

The calculation of P is dependent on the load ratio $\mathrm{F_a}/\mathrm{F_r}$ and the calculation factor e:

 $\int 1$ $\frac{F_a}{F_r} \le e \implies P = F_r$

_ <i>f</i> _2		
$\frac{F_a}{F_r}$ e \Rightarrow	$P = X \cdot F_{r} + Y \cdot F_{a}$	1
е	_	Calculation factor
Fa	N	Axial load
F _r	N	Radial load
Р	N	Equivalent dynamic bearing load
Х	_	Radial load factor
Y	_	Axial load factor

The specified values are valid for normal operating clearance. If the operating clearance differs significantly, the use of Bearinx is recommended for calculation of the rating life. If the calculation values lie between the stated values (such as 0,4), then read off the table values for 0,3 and 0,5 and determine the intermediate values using linear interpolation.

For normal operating clearance, observe the fit recommendations in Catalogue HR 1, Rolling Bearings.

☐ 7 Factors	e, X and Y	
-------------	------------	--

$\frac{f_0 \cdot F_a}{C_{0r}}$	Factor (for normal operating clearance)						
	e	Х	Y				
0,3	0,22	0,56	2				
0,5	0,24	0,56	1,8				
0,5 0,9	0,28	0,56	1,58				
1,6	0,32	0,56	1,4				
3	0,36	0,56	1,2				
6	0,43	0,56	1				

Equivalent static bearing load

The calculation of P_0 for deep groove ball bearings under static load is dependent on the load ratio F_{0a}/F_{0r} and the factor 0,8:

_ <i>f</i> _3		
$\frac{F_{0a}}{F_{0r}} \le 0,8$	\Rightarrow	$P_0 = F_{0r}$

_ <u>f</u> _14		
$rac{F_{0a}}{F_{0r}}$ >0,8 \Rightarrow	$P_0 = 0, 0$	$5 \cdot F_{0r} + 0, 5 \cdot F_{0a}$
F _{0a}	Ν	Largest axial load present (maximum load)
F _{0a} F _{0r} P ₀	Ν	Largest radial load present (maximum load)
P ₀	Ν	Equivalent static bearing load

Static load safety factor

In addition to the basic rating life L (L_{10h}), it is also always necessary to check the static load safety factor S_0 :

_ <i>f</i> _15		
$S_0 = \frac{C_0}{P_0}$		
S ₀	_	Static load safety factor
$\frac{S_0}{C_0}$	Ν	Basic static load rating
P ₀	Ν	Equivalent static bearing load

1.11 Minimum load

In order that no slippage occurs between the contact partners, the bearings must be constantly subjected to a sufficiently high load. Based on experience, a minimum radial load of the order of $P > C_{0r}/100$ is thus necessary. In most cases, however, the radial load is already higher than the requisite minimum load due to the weight of the supported parts and the external forces.

If the minimum radial load is lower than stated, please consult Schaeffler.

1.12 Design of bearing arrangements

In order to allow full utilisation of the load carrying capacity of the bearings and thus also achieve the requisite rating life, the bearing rings must be rigidly and uniformly supported by means of contact surfaces over their entire circumference and over the entire width of the raceway. The seating and contact surfaces should not be interrupted by grooves, holes or other recesses. The accuracy of mating parts must meet specific requirements.

Radial location of bearings, fit recommendations

In addition to supporting the rings adequately, the bearings must also be securely located in a radial direction, to prevent creep of the bearing rings on the mating parts under load. This is generally achieved by means of tight fits between the bearing rings and the mating parts. If the rings are secured inadequately or incorrectly, this can cause severe damage to the bearings and adjacent machine parts. Influencing factors, such as the conditions of rotation, magnitude of the load, internal clearance, temperature conditions, design of the mating parts and the mounting and dismounting options must be taken into consideration in the selection of fits.

If shock type loads occur, tight fits in the form of transition fits or interference fits are required to prevent the rings from coming loose at any point.

Axial location of bearings, location methods

A tight fit alone is not normally sufficient to also locate the bearing rings securely on the shaft and in the housing bore in an axial direction. This must usually be achieved by means of an additional axial location or retention method. The axial location of the bearing rings must be matched to the type of bearing arrangement. Shaft shoulders and housing shoulders, housing covers, nuts, spacer rings and retaining rings etc., are fundamentally suitable.

Dimensional accuracy, geometrical accuracy and running accuracy of the bearing seats

The accuracy of the cylindrical bearing seat on the shaft and in the housing should correspond to the accuracy of the bearing used. For deep groove ball bearings with the tolerance class Normal, the shaft seat should correspond to a minimum of standard tolerance grade IT6 and the housing seat to a minimum of IT7. Guide values for the geometrical tolerances and positional tolerances of bearing seating surfaces and corresponding numerical values for the IT grades can be found in the table.

Tolerance class		Bearing	Fundamental tolerance grades				
To ISO 492:2023	To DIN 620	seating sur- face	IT grade	t ₁	t ₂	t ₃	
Normal	PN (PO)	Shaft	IT6 (IT5)	Circumferen- tial load	Circumferen- tial load	IT4	
				IT4/2	IT4/2		
		Housing	IT6 (IT5)	Point load	Point load	IT4	
				IT5/2	IT5/2		
			IT7 (IT6)	Circumferen- tial load	Circumferen- tial load	IT5	
				IT5/2	IT5/2		
			IT7 (IT6)	Point load	Point load	IT5	
				IT6/2	IT6/2		

■8 Guide values for the geometrical tolerances and positional tolernaces of bearing seating surfaces in accordance with ISO 286-1 (IT grade)

9	Numerica	l values fo	r basic	tolerances	to ISO	286-1:2010	(IT grade)
---	----------	-------------	---------	------------	--------	------------	------------

Nominal dimension		IT grade	IT grade						
over	incl.	IT3	IT4	IT5	IT6	IT7			
mm	mm	μm	μm	μm	μm	μm			
6	10	2,5	4	6	9	15			
10	18	3	5	8	11	18			
18	30	4	6	9	13	21			
30	50	4	7	11	16	25			
50	80	5	8	13	19	30			
80	120	6	10	15	22	35			

Roughness of cylindrical bearing seating surfaces

The roughness of the bearing seats must be matched to the tolerance class of the bearings. The mean roughness value Ra must not be too high, in order to maintain the interference loss within limits. The shafts must be ground, while the bores must be precision turned. Guide values as a function of the IT grade of bearing seating surfaces can be found in the table.

■10 Guide values for mean roug	ghness Rama	ax for ground	l bearing sea	ats (IT grade)
Nominal dimension	Ramax			

Nominal annension		KdilidX					
from	to	IT7	IT6	IT5	IT4		
mm	mm	μm	μm	μm	μm		
-	80	1,6	0,8	0,4	0,2		
80	500	1,6	1,6	0,8	0,4		

Mounting dimensions for the contact surfaces of bearing rings

The mounting dimensions of the shaft shoulders and housing shoulders, and spacer rings etc., must ensure that the contact surfaces for the bearing rings are of sufficient height. However, they must also reliably prevent rotating parts of the bearing from grazing stationary parts. Proven mounting dimensions for the radii and diameters of the abutment shoulders are indicated in the product tables. These dimensions are limiting dimensions (maximum or minimum dimensions). These limiting dimensions must be observed.

1.13 Mounting and dismounting

Deep groove ball bearings are not separable. In the mounting of non-separable bearings, the mounting forces must always be applied to the bearing ring with a tight fit.

The mounting and dismounting options for deep groove ball bearings by thermal, hydraulic or mechanical methods, must also be taken into consideration in the design of the bearing position.

Rolling bearings are well-proven precision machine elements for the design of economical and reliable bearing arrangements, which offer high operational security. In order that these products can function correctly and achieve the envisaged operating life without detrimental effect, they must be handled with care.

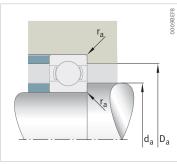
1.14 Further information

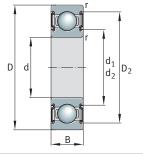
The information on the design of the bearing arrangement, lubrication, mounting and dismounting and on the operation of the bearings provided in the Technical Principles of Catalogue HR 1, Rolling Bearings, must be observed as further information.

HR 1 | Rolling Bearings | https://www.schaeffler.de/std/1D3D

MH 1 | Mounting Handbook | https://www.schaeffler.de/std/1B68

TPI 64 | Corrosion-resistant products | https://www.schaeffler.de/std/1F37


1.15 Product tables


1.15.1 Explanations

В	m m	Width
_	mm	
C _{0r}	Ν	Basic static load rating, radial
Cr	Ν	Basic dynamic load rating, radial
C _{ur}	Ν	Fatigue limit load, radial
d	mm	Bearing bore diameter
D	mm	Bearing outside diameter
d ₁	mm	Inner ring rib diameter
d ₂	mm	Caliber diameter inner ring
D ₂	mm	Caliber diameter outer ring
da	mm	Abutment diameter, shaft shoulder
Da	mm	Housing shoulder diameter
f ₀	-	Calculation factor
m	kg or lbs	Mass
n _G	min ⁻¹	Limiting speed
r _{a max}	mm	Max. undercut radius
r _{min}	mm	Min. chamfer dimension

1.15.2 Deep groove ballbearings, single rowFD designContact seals on both sides

Designation	d	D	В	dı	d ₂	D ₂	r min.	
-	mm	mm	mm	mm	mm	mm	mm	
S6000-2RSR-FD	10	26	8	-	13,9	22,38	0,3	
S6200-2RS-FD	10	30	9	-	15,6	25,2	0,6	
S6300-2RS-FD	10	35	11	-	17,5	29,5	0,6	
S6001-2RS-FD	12	28	8	-	15,8	24,9	0,3	
S6201-2RS-FD	12	32	10	-	17,5	28,1	0,6	
S6301-2RS-FD	12	37	12	_	18,3	31,6	1	
S6002-2RS-FD	15	32	9	-	18,8	28,8	0,3	
S6202-2RS-FD	15	35	11	-	20,9	30,9	0,6	
S6302-2RS-FD	15	42	13	-	22,7	36,7	1	
S6003-2RS-FD	17	35	10	-	21,7	31,3	0,3	
S6203-2RS-FD	17	40	12	-	23,5	35,3	0,6	
S6303-2RS-FD	17	47	14	-	25,5	39,6	1	
S6004-2RS-FD	20	42	12	-	25,3	37	0,6	
S6204-2RS-FD	20	47	14	-	27,3	41,5	1	
S6304-2RS-FD	20	52	15	-	27,2	43,8	1,1	
S6005-2RS-FD	25	47	12	_	30,8	42	0,6	
S6205-2RS-FD	25	52	15	-	32,5	46,3	1	
S6305-2RSR-FD	25	62	17	38,1	-	53,22	1,1	
S6006-2RS-FD	30	55	13	_	36,5	49,9	1	
S6206-2RSR-FD	30	62	16	40,7	-	55,13	1	
S6306-2RSR-FD	30	72	19	44,9	-	62,35	1,1	
S6007-2RSR-FD	35	62	14	44	-	57,05	1	
S6207-2RSR-FD	35	72	17	47,6	-	64,83	1,1	
S6307-2RSR-FD	35	80	21	-	46,78	71,58	1,5	
S6008-2RSR-FD	40	68	15	49,2	-	62,5	1	
S6208-2RSR-FD	40	80	18	-	50,1	70,78	1,1	
S6009-2RSR-FD	45	75	16	54,5	-	69	1	
S6209-2RSR-FD	45	85	19	-	53,5	76,35	1,1	
S6010-2RSR-FD	50	80	16	60	-	74,55	1	
S6210-2RSR-FD	50	90	20	-	60	82,15	1,1	

0019C3EC

Mounting dimensions

2RS, 2RSR

Cr	Cor	Cur	n _G	f ₀	m	da	Da	r _a
						min.	max.	max.
Ν	N	Ν	min ⁻¹	-	kg		mm	mm
3890	1570	125	11000	9,9	0,02	12	24	0,3
5100	2380	108	18000	13,1	0,032	14,2	25,8	0,6
7650	3480	158	17000	12,3	0,058	14,2	30,8	0,6
5100	2380	108	18000	13,1	0,022	14	26	0,3
6820	3050	139	17000	12,3	0,036	16,2	27,8	0,6
9710	4190	190	16000	11,1	0,065	17,6	31,4	1
5580	2840	129	15000	13,9	0,03	17	30	0,3
7650	3720	169	14000	13,1	0,045	19,2	30,8	0,6
11440	5430	246	13000	12,3	0,081	20,6	36,4	1
6000	3250	148	13000	14,3	0,039	19	33	0,3
9580	4780	217	12000	13,1	0,065	21,2	35,8	0,6
13580	6580	299	11000	12,2	0,114	22,6	41,4	1
9380	5020	228	11000	13,8	0,069	23,2	38,8	0,6
12800	6650	302	11000	13,2	0,109	25,6	41,4	1
15800	7880	358	10000	12,4	0,144	27	45	1
10000	5850	266	9500	14,5	0,077	28,2	43,8	0,6
14000	7880	358	9000	13,9	0,13	30,6	46,4	1
17500	9000	960	4700	10,6	0,245	32	55	1
13200	8300	377	8000	14,8	0,1	34,6	50,4	1
16500	9070	600	4500	11,1	0,211	35,6	56,4	1
22700	12000	1290	4100	10,6	0,32	37	65	1
13600	8240	720	4300	11,9	0,155	39,6	57,4	1
21800	12300	1210	3900	11,1	0,303	42	65	1
28300	15400	1680	3600	10,6	0,483	44	71	1,5
14300	9240	770	3900	12,2	0,188	44,6	63,4	1
24700	14300	1400	3500	11,2	0,384	47	73	1
17800	12100	870	3500	12,2	0,244	49,6	70,4	1
27800	16400	1490	3200	11,3	0,441	52	78	1
18500	13300	920	3200	12,5	0,271	54,6	75,4	1
29800	18600	1630	3000	11,5	0,457	57	83	1

2 Radial insert ball bearings

Radial insert ball bearings GYE..-KRR-B-FA107-VA-FD and GE..-KRR-B-FA107-VA-FD in FD design are designed for use in the food and beverage industry. They have a significantly higher resistance to corrosion and media than conventional radial insert ball bearings and are therefore extremely suitable for a wide range of applications in the food industry, where they are exposed to various media, moisture, salt spray mist, contaminated water or cleaning agents.

With grub screws in inner ring

Two high-grade steel grub screws offset by 120° are used to locate the inner ring (Y type) on the shaft. This location method is suitable for bearing arrangements with a constant direction of rotation or, under low speed and load, for an alternating direction of rotation.

The grub screws are self-retaining and have a fine pitch thread with cup point for secure location of the bearings, in due accordance with the stated tightening torques.

Bearing series:

• GYE..-KRR-B-FA107-VA-FD

With eccentric locking collar

The bearings are located on the shaft by means of a high-grade steel locking collar. They are thus particularly suitable for bearing arrangements with a constant direction of rotation or, under low load and speed, for an alternating direction of rotation.

The locking collar is preferably tightened in the direction of rotation and must be secured by means of a grub screw. This location method prevents damage to the shaft and can be easily loosened again.

Bearing series:

• GE..-KRR-B-FA107-VA-FD

11 Comparison of series

Feature	GYEKRR-B-FA107-VA-FD	GEKRR-B-FA107-VA-FD
	ROU	
Shaft diameter	20 mm to 40 mm	20 mm to 40 mm
Location method	Grub screws	Eccentric locking collar
Seal	RSR	RSR
Compensation of misalignment	yes	yes
Internal clearance	C3	C3
Bearing components	High-grade steel	High-grade steel
Grease approved for food application according to NSF H1	yes	yes
Relubrication facility	yes	yes
Recommended application temperature	-30 °C to +100 °C	-30 °C to +100 °C
Comments	High-grade steel version with flinger shield	High-grade steel version

2.1 Bearing design

The bearings in FD design (high-grade steel version with food-grade grease) correspond in their design to single row deep groove ball bearings 62. They are ready to fit, particularly easy to fit and allow robust, economical bearing arrangements with a long operating life. Grub screws in the extended ring or an eccentric locking collar are used to locate them on the shaft.

Operation even under difficult conditions is ensured by seals that are matched to the application and the use of food-grade greases.

Special characteristics

- bearing rings, cages and balls made from high-grade steel
- eccentric locking rings, grub screws and flinger shields made from high-grade steel
- highly effective contact seal of type RSR with high-grade steel reinforcement and additional flinger shield
- relubrication facility

Design variants

Radial insert ball bearings in FD design for the food industry are available with various location methods as:

- radial insert ball bearing with grub screws in the inner ring, GYE..-KRR-B-FA107-VA-FD
- radial insert ball bearing with eccentric locking collar, GE..-KRR-B-FA107-VA-FD

2.2 Corrosion-resistant materials

The bearing rings, cages and rolling elements are made from high-grade steel. The seal and flinger shield reinforcement as well as the fasteners such as eccentric locking collars and grub screws are also made from high-grade steel.

The materials used in series FD are resistant to moisture, contaminated water, salt spray mist and weak alkaline or weak acidic cleaning agents.

Bearing components	Designation	Material number		
	ISO 683-17:2000	AISI	EN 10088-3	
Bearing rings	X105CrMo17	440C	1.4125	
Rolling elements				
Cage	X5CrNi18-10	304	1.4301	
Grub screws				
Eccentric locking collar				
Seal reinforcement				
Flinger shields				

We reserve the right to make technical changes, including material changes, as part of the ongoing development.

Media resistance

In the food industry in particular, the resistance of the material in relation to various cleaning agents is of increasing importance.

13	Resistance	to	media	
----	------------	----	-------	--

Medium		Concentration	X5CrNi1	8-10	X105Cr/	Mo17
		%	+20 °C	+80 °C	+20 °C	+80 °C
Hydrochloric acid	HCl	0,1	+	+	_	-
		1	(+)	-	_	-
		18	_	-	_	-
Hydrofluoric acid	HF	1	_	-	_	-
		5	_ 1)	-	_ 1)	-
Sulphuric acid	H ₂ SO ₄	1	+	-	-	-
		10	(+)	-	-	-
		96	+	(+)	-	-
Sulphurous acid	H ₂ SO ₃	1	+	+	-	-
Nitric acid	HNO ₃	5	+	+	_	-
		25	+	+	+	(+)
		65	+	+	+	(+)
Phosphoric acid	H ₃ PO ₄	1	+	+	+	+
		10	+	+	(+)	+
		85	+	+	+	-
Formic acid	НСООН	5	+	+	-	-
		25	+	+	-	-
Acetic acid	CH ₃ COOH	5	+	+	+	-
		25	+	+	+	-
Citric acid		5	+	+	+	+
		25	+	+	-	-
Chloroacetic acid		5	+	+	(+)	-
Sodium chloride	NaCl	10	+	+	(-)	(-)
Sea water		4	+	+	(-)	(-)
Distilled water		—	+	+	+	+
Ammonium hydrox-	NH ₄ OH	1	+	+	+	+
ide		10	+	+	+	+
Potassium hydroxide	КОН	0,1	+	+	+	+
solution		1	+	+	+	+
		10	+	+	+	+
Sodium hypochlorite s	solution	1	+ 1)	+	2)	(-)
Hydrogen peroxide	$H_{2}O_{2}$	5	+	+	+	+

_	Not resistant
(-)	Barely resistant
(+)	Moderately resistant
+	Resistant

¹⁾ Not tested. Estimate generated from remaining test series.

²⁾ Not tested. No estimate possible.

FDA-compliant materials

The following FDA-compliant materials are used:

Ⅲ14 FDA-compliant materials

Bearing components	Material, designation	FDA directive
Seals	NBR	FDA 21 CFR 177.2600
Grease	Mobile Grease FM222	FDA 21 CFR 178.3570

The classification of components as FDA-compliant is based on information provided by material manufacturers.

2.3 Lubrication

Food-grade grease application

The high-quality grease used for lubrication is approved for food applications to category NSF H1. The grease is particularly suitable for use in the food industry and meets the quality requirements of FDA 21 CFR 178.3570 in full. Furthermore, the grease is halal and kosher-certified.

A lubricant of class NSF H1 is suitable for applications in which incidental contact between food and lubricant may occur and is unavoidable by technical measures. Such lubricants must be non-toxic and neutral in taste and odour.

The grease also contains only allergen-free ingredients in accordance with Regulation (EC) 1169/2011 and is therefore free of cereals containing gluten, nuts and milk, for example. In addition, the grease does not contain any components comprising animal or genetically modified organisms.

The halal and kosher certification of the lubricant used confirms that the strict halal and kosher criteria are also met in relation to the processing and ingredients of the bearings. These dietary laws of the Muslim and Jewish population not only apply to the actual food and beverages, but also to the machines and environment during manufacture.

Lubrication of bearings

Initial greasing is carried out with Mobile Grease FM222, an aluminium complex soap grease with food applications approval to NSF H1, which is sufficient in many cases for the operating life of the bearings. The bearings are relubricated via lubrication holes on the outside surface of the outer rings. The use of rolling bearing grease Arcanol FOOD2 is recommended for relubrication.

Arcanol FOOD2

Arcanol FOOD2 is a rolling bearing grease for rolling bearing arrangements in the food industry. It is registered to NSF H1 (reg.no. 150727), is halal-certified and kosher-certified, has very good water resistance and corrosion protection, and has very good resistance to cleaning chemicals.

Typical areas of application are:

- applications with food contact
- H1 to USDA
- bearing positions with NSF H1 requirement (food contact)

The criteria for application are:

- universal application
- good relubrication

2.4 Sealing

Radial insert ball bearings for the food industry are sealed in a radial direction on both sides with contact seals made from NBR. These seals are of the type RSR and are elastomer lip seals with a high-grade steel reinforcement. This variant has the suffix KRR.

In the case of variant GYE, the seals are additionally fitted with flinger shields made from high-grade steel, which protect the seals against mechanical damage.

As standard, bearings for the food industry are delivered with seals made from NBR.

■15 Seal type

Seal RSR with flinger shield in high-grade steel design:

single piece, sheet steel washer made from high-grade steel with vulcanised and radially preloaded seal lip made from NBR and additional flinger shield made from high-grade steel

used in radial insert ball bearings with grub screws in the inner ring (series GYE) Seal RSR in high-grade steel design:

single piece, sheet steel washer made from high-grade steel with vulcanised and radially preloaded seal lip made from NBR

used in radial insert ball bearings with eccentric locking collar (series GE)

In the case of direct exposure to spray water, prior consultation with Application Engineering is required. For any queries regarding resistance to specific media, please consult Application Engineering.

2.5 Suffixes

■16 Available designs

Suffix	Series	Description	Design
В	-	Bearing with spherical outer ring	Standard

Suffix	Series	Description	Desig
FA107	-	Bearing with lubrication holes on the locating side	
FD	-	Suitable for applications in the food industry	
KRR	GE	Lip seal on both sides	
		Seal type RSR made from NBR	
KRR	GYE	Lip seal on both sides	
		Seal type RSR made from NBR	
		Additional flinger shield	
VA	-	High-grade steel version	

2.6 Temperature range

Radial insert ball bearings for the food industry are suitable for operating temperatures from -30 °C to +100 °C.

2.7 Internal clearance

Radial insert ball bearings for the food industry are manufactured as standard with radial internal clearance C3 (Group 3). C3 is not stated in the designation.

The internal clearance is larger than in the case of normal deep groove ball bearings. As a result, support of misalignments and shaft deflections is improved.

The values for radial internal clearance correspond to DIN 620-4:2004 (ISO 5753-1:2009). These are valid for bearings which are free from load and measurement forces, i.e. without elastic deformation.

d		C2 (Group 2)		CN (Group N)		С3		C4		C5	
						(Grou	(Group 3)		(Group 4)		(Group 5)
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max
mm	mm	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm
2,5	6	-	-	2	13	8	23	-	-	-	-
6	10	-	-	2	13	8	23	14	29	20	37
10	18	-	-	3	18	11	25	18	33	25	45
18	24	-	-	5	20	13	28	20	36	28	48
24	30	-	-	5	20	13	28	23	41	30	53
30	40	-	-	6	20	15	33	28	46	40	64
40	50	-	-	6	23	18	36	30	51	45	73
50	65	-	-	8	28	23	43	38	61	55	90
65	80	-	-	10	30	25	51	46	71	65	105
80	100	-	-	12	36	30	58	53	84	75	120
100	120	-	-	15	41	36	66	61	97	90	140
120	140	-	-	18	48	41	81	71	114	105	160
140	160	_	-	18	53	46	91	81	130	120	180

■17 Radial internal clearance

2.8 Dimensions, tolerances

Dimensions

The main dimensions of radial insert ball bearings correspond to ISO 9628 and DIN 626-1:1999. Nominal dimensions of the radial insert ball bearings are listed in the product tables >35|2.15.

Tolerances

The tolerances for the dimensional and running accuracy of deep groove ball bearings correspond to tolerance class Normal in accordance with ISO 492:2014.

The diameter tolerances of radial insert ball bearings deviate from the values in the above-mentioned standard. The inner ring bore has a plus tolerance to facilitate mounting of the bearing.

In the case of sealed bearings, the largest value and smallest value of the outside diameter can deviation from the mean value by up to 0,03 mm.

Inner ring				Outer ri	Outer ring			
d t _{∆dmp}			D		t∆Dmp			
over	incl.	U	L	over	incl.	U	L	
mm	mm	μm	μm	mm	mm	μm	μm	
18	24	+25	0	50	80	0	-13	
24	30	+25	0	80	120	0	-13	
30	40	+25	0	120	150	0	-13	

■18 Tolerances of radial insert ball bearings, FD design

2.9 Design and safety guidelines

2.9.1 Load carrying capacity

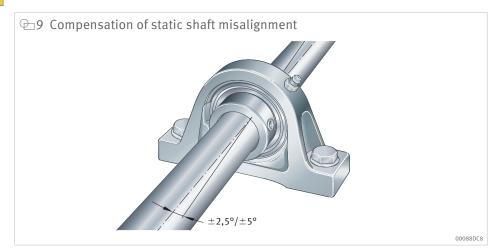
Radial load carrying capacity

The balls are in contact with the raceways at one point only. Under purely radial load, the contact points between the rolling elements and raceways lie at the centre of the raceway. As a result, the connection between the contact points passes through the radial plane, i.e. the optimum load direction is a purely radial load.

Axial load carrying capacity

Due to the deep raceway grooves in the bearing rings and the narrow osculation between the raceway grooves and the balls, the bearings can support axial loads in both directions. The axial load carrying capacity is dependent, for example, on the bearing size, the internal construction and the operating clearance. If the axial load is too high, however, this can increase the running noise and considerably reduce the operating life of the bearings.

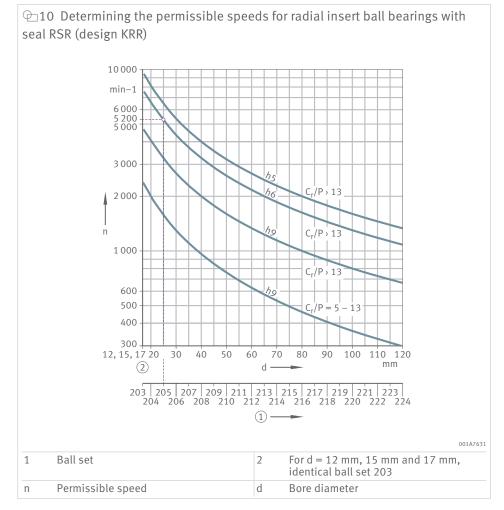
If there is any uncertainty regarding the axial load carrying capacity of the bearings, please consult Schaeffler.


2.9.2 Compensation of angular misalignments

Bearings with a spherical outside surface of the outer ring, fitted in housings with a concave bore, can compensate for static misalignment of the shaft.

For units with a lubrication groove in the housing and lubrication hole in the radial insert ball bearing, the following applies:

- Up to ±2,5°, the units can be relubricated.
- Between ±2,5° and ±5°, the facility for relubrication is dependent on the specific unit. Please contact us in this case.
- Over ±5°, relubrication is no longer possible.


The units are not suitable for supporting swivelling or tumbling motion.

2.9.3 Speeds

The speed limits are dependent on the load, the clearance between the bearing bore and shaft, and the friction of the seals in the case of bearings with contact seals.

Guide values for the permissible speeds can be derived from the diagram.

In the case of load ratios $C_r/P > 13$, the speeds can be increased. For $C_r/P < 5$, location by means of a fit with a shaft roughness of Ra 0,3 is recommended, as specified in Catalogue HR 1, Rolling Bearings. For both types of applications, please contact Schaeffler. In order to ensure slippage-free operation, the minimum radial load must be observed.

Example of permissible speed calculation

19	Given
----	-------

Shaft tolerance		h6(E)
Radial insert ball bearing		GE25-KRR-B-FA107-VA-FD
Ball set		205
Sealing		RSR
Basic dynamic load rating, radial	Cr	13400 N
Load	Р	1000 N

III 20 Required III 20 Requi		
Load ratio	C _r /P	13400 N/1000 N = 13,4 > 13
Permissible speed	n	5200 min ⁻¹ according to the determination of the permissible speeds for radial insert ball bearings

2.10 Dimensioning

Equivalent dynamic bearing load

The basic rating life equation $L = (C_r/P)^p$ used in the dimensioning of bearings under dynamic load assumes a load of constant magnitude and direction. In radial bearings, this is a purely radial load F_r . If such a load is present, the bearing load F_r is used in the rating life equation for P (P = F_r).

If a load of constant magnitude and direction is not present, a constant radial force must first be determined for the rating life calculation that, in relation to the rating life, represents an equivalent load. This force is known as the equivalent dynamic bearing load P.

The calculation of P is dependent on the load ratio $\mathrm{F_a}/\mathrm{F_r}$ and the calculation factor e:

$$f_{a} \leq e \implies P = F_{r}$$

$$f_{17}$$

$\frac{F_a}{F_r}$ e \Rightarrow	$P = X \cdot F_r + Y \cdot F_a$	
е	_	Calculation factor
Fa	Ν	Axial load
Fr	Ν	Radial load
Р	Ν	Equivalent dynamic bearing load
Х	—	Radial load factor
Y	_	Axial load factor

The specified values are valid for normal operating clearance. If the operating clearance differs significantly, the use of Bearinx is recommended for calculation of the rating life. If the calculation values lie between the stated values (such as 0,4), then read off the table values for 0,3 and 0,5 and determine the intermediate values using linear interpolation.

For normal operating clearance, observe the fit recommendations in Catalogue HR 1, Rolling Bearings.

$\frac{f_0 \cdot F_a}{C_{0r}}$	Factor (for normal operating clearance)				
	е	Х	Y		
0,3 0,5 0,9 1,6	0,22	0,56	2		
0,5	0,24	0,56	1,8		
0,9	0,28	0,56	1,58		
1,6	0,32	0,56	1,4		
3	0,36	0,56	1,2		
6	0,43	0,56	1		

21 Factors e, X and Y

Equivalent static bearing load

As radial insert ball bearings have the same internal construction as single row deep groove ball bearings, their equivalent static bearing load is calculated in the same manner as for deep groove ball bearings.

The calculation of P_0 for deep groove ball bearings under static load is dependent on the load ratio F_{0a}/F_{0r} and the factor 0,8:

_ <i>f</i> _18		
$\frac{F_{0a}}{F_{0r}} \le 0,8$	\Rightarrow	$P_0 = F_{0r}$

 $\frac{F_{0a}}{F_{0r}} > 0.8 \implies P_0 = 0.6 \cdot F_{0r} + 0.5 \cdot F_{0a}$ $\frac{F_{0a}}{F_{0a}} > 0.8 \implies N \qquad \text{Largest axial load pressure}$

F _{0a}	Ν	Largest axial load present (maximum load)
F _{Or}	Ν	Largest radial load present (maximum load)
Po	Ν	Equivalent static bearing load

2.11 Minimum load

In order that no slippage occurs between the contact partners, the bearings must be constantly subjected to a sufficiently high load. Based on experience, a minimum radial load of the order of $P > C_{0r}/100$ is thus necessary. In most cases, however, the radial load is already higher than the requisite minimum load due to the weight of the supported parts and the external forces.

If the minimum radial load is lower than stated, please consult Schaeffler.

2.12 Design of bearing arrangements

Shaft tolerances for radial insert ball bearings

The permissible shaft tolerance is dependent on the speed and load. Shafts of the tolerance classes h6 (E) to h9 (E) can be used.

Conventional drawn shafts will suffice for most applications.

Roughness of cylindrical bearing seating surfaces

The roughness of the bearing seats must be matched to the tolerance class of the bearings. The mean roughness value Ra must not be too high, in order to maintain the interference loss within limits. The shafts must be ground, while the bores must be precision turned. Guide values as a function of the IT grade of bearing seating surfaces can be found in the table.

 \blacksquare 22 Guide values for mean roughness Ramax for ground bearing seats (IT grade)

Nominal dimension		Ramax				
from	to	IT7	IT6	IT5	IT4	
mm	mm	μm	μm	μm	μm	
-	80	1,6	0,8	0,4	0,2	
80	500	1,6	1,6	0,8	0,4	

Housing units for radial insert ball bearings

For radial insert ball bearings for the food industry, Schaeffler offers the appropriate plummer block housings and flanged housings made from plastic. The plastic housings, like the radial insert ball bearings themselves, are corrosion-resistant and suitable for food applications.

The housing units comprise radial insert ball bearings with a curved outer ring and a housing with a curved bore to form ready-to-fit units. The user is thus spared the need for costly production of the mounting environment required for these bearings. The areas of application correspond to those of the radial insert ball bearings.

2.13 Mounting and dismounting

The detailed guidelines on the mounting and dismounting of radial insert ball bearings must be observed.

Tightening torques for grub screws

The tightening torques for grub screws from Schaeffler are dependent on the material of the screws. The tightening torques for the high-grade steel grub screws are valid only for original grub screws from Schaeffler (INA or FAG brand).

W	G	M _A
mm	-	Nm
2,5	M5	2,4
3	M6×0,75	3,9
4	M8×1	8,3

23 Tightening torques for metric high-grade steel grub screws

Rolling bearings are well-proven precision machine elements for the design of economical and reliable bearing arrangements, which offer high operational security. In order that these products can function correctly and achieve the envisaged operating life without detrimental effect, they must be handled with care.

2.14 Further information

The information on the design of the bearing arrangement, lubrication, mounting and dismounting and on the operation of the bearings provided in the Technical Principles of Catalogue HR 1, Rolling Bearings, must be observed as further information.

HR 1 | Rolling Bearings | https://www.schaeffler.de/std/1D3D

SG 1 | Radial insert ball bearings and housing units | https://www.schaeffler.de/std/1B64

MH 1 | Mounting Handbook | https://www.schaeffler.de/std/1B68

TPI 64 | Corrosion-resistant products | https://www.schaeffler.de/std/1F37

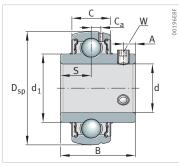
2.15 Product tables

2.15.1 Explanations

A	mm	Thread spacing
В	mm	Width
С	mm	Outer ring width
C _{0r}	Ν	Basic static load rating, radial
Ca	mm	Distance to lubrication hole
Cr	Ν	Basic dynamic load rating, radial
C _{ur}	Ν	Fatigue limit load, radial
d	mm	Bearing bore diameter
d ₁	mm	Inner ring rib diameter
d ₃	mm	Outside diameter of locking collar
da	mm	Abutment diameter, shaft shoulder
f ₀	-	Calculation factor
m	kg or lbs	Mass
S	mm	Distance to raceway centre
W	mm	Width across flats

2.15.2 Radial insert ball

bearings, with grub screw

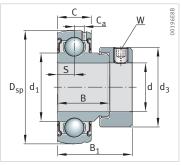

FD design

With grub screw in inner ring

Spherical outer ring

With extended inner ring

d	D _{sp}	C	В	Designation	Cr	C _{0r}	C _{ur}	f ₀	
mm	mm	mm	mm	-	N	N	Ν	-	
20	47	16	31	GYE20-KRR-B-FA107-VA-FD	10900	5300	280	13,1	
25	52	17	34,1	GYE25-KRR-B-FA107-VA-FD	11900	6300	335	13,8	
30	62	19	38,1	GYE30-KRR-B-FA107-VA-FD	16700	9000	475	13,8	
35	72	20	42,9	GYE35-KRR-B-FA107-VA-FD	22000	12300	655	13,8	
40	80	21	49,2	GYE40-KRR-B-FA107-VA-FD	24900	14300	800	14	



GYE..-KRR-B-FA107-VA-FD

S	d ₁	Ca	A	W	m
mm	mm	mm	mm	mm	kg
12,7	28,3	4	5	2,5	0,16
14,3	34	4,15	5	2,5	0,21
15,9	40,3	5	6	3	0,3
17,5	46,9	5,7	6,5	3	0,46
19	52,4	5,9	8	4	0,61

2.15.3 Radial insert ballbearings, with eccentric lockingcollarFD designWith eccentric locking collarSpherical outer ring

d	D _{sp}	C	В	Designation	Cr	C _{0r}	C _{ur}	f ₀
mm	mm	mm	mm	-	N	N	N	-
20	47	14	21,5	GE20-KRR-B-FA107-VA-FD	12840	6650	280	13,1
25	52	15	21,5	GE25-KRR-B-FA107-VA-FD	14020	7880	335	13,8
30	62	16	23,8	GE30-KRR-B-FA107-VA-FD	19460	11310	475	13,8
35	72	17	25,4	GE35-KRR-B-FA107-VA-FD	25670	15300	655	13,8
40	80	18	30,2	GE40-KRR-B-FA107-VA-FD	29520	18140	800	14

GE..-KRR-B-FA107-VA-FD

S	d ₁	Ca	B ₁	d ₃	W	m
				max.		
mm	mm	mm	mm	mm	mm	kg
7	28,3	4,1	31	33,3	3	0,17
7,5	34	4,15	31	38,1	3	0,2
8	40,3	5	35,7	44,5	3	0,3
8,5	46,9	5,35	38,9	55,6	3	0,5
9	52,4	5,5	43,7	60,3	4	0,63

3 Plastic housing units

Housing units with white, FDA-approved plastic housings made from PBT are available as plummer block housing units and flanged housing units.

The glass fibre reinforced plastic PBT is highly resistant to humidity, UV radiation, bacterial and fungal attacks as well as many chemical agents.

The white plastic housing units are highly suitable for applications in the food industry, where they are exposed to various media, moisture, salt spray mist, contaminated water or cleaning agents.

Plummer block housing units

Plummer block housing units are available with a long base or short base. They have a complete housing base and therefore offer no hidden spaces for bacterial growth. The housings are made from glass fibre reinforced, white plastic PBT, are not split and are screw mounted to the adjacent construction by means of slots or threaded holes. Inserts made from corrosion-resistant steel are integrated into the housing base, to prevent damage when tightening the screws.

For relubrication of radial insert ball bearings, the housing bore has a lubrication groove and the housing has a lubrication hole suitable for conventional lubrication nipples. The lubrication nipple is supplied already fitted, a bearing end cap is supplied loose at the time of delivery.

Versions:

- RASEY..-TV-VA-FD
- RASE..-TV-VA-FD

Versions:

- RSHEY..-TV-VA-FD
- RSHE..-TV-VA-FD

Flanged housing units

Flanged housing units are available as two-bolt flanged housing units and fourbolt flanged housing units. For location, the housings have through holes reinforced with high-grade steel inserts.

The housing material, the design of lubrication arrangements and the delivered condition correspond to those of plummer block housing units.

Versions:

- RCJTY..-TV-VA-FD
- RCJT..-TV-VA-FD

• GLCTE..-TV-VA-FD

Versions:

- RCJY..-TV-VA-FD
- RCJ..-TV-VA-FD

24 Possible combinations of radial insert ball bearings and plastic housings

Plastic housing			Radial insert ball bearing	
			GYEKRR-B-FA107-VA-FD	GEKRR-B-FA107-VA-FD
Location method			Grub screws	Eccentric locking collar
Shaft diameter			20 mm to 40 mm	20 mm to 40 mm
Plummer block housing	8	ASETV-WHT	RASEYTV-VA-FD	RASETV-VA-FD
	- 3 .		▶50 3.13.2	▶52 3.13.3
	3	SHETV-WHT	RSHEYTV-VA-FD	RSHETV-VA-FD
			▶54 3.13.4	▶56 3.13.5
Two-bolt flanged housing		CJTTV-WHT	RCJTYTV-VA-FD	RCJTTV-VA-FD
			▶58 3.13.6	▶60 3.13.7
		GLCTETV-WHT	_	GLCTETV-VA-FD
	· ()			▶62 3.13.8
Four-bolt flanged housing	0 3 0	CJTV-WHT	RCJYTV-VA-FD	RCJTV-VA-FD
			▶64 3.13.9	▶66 3.13.10

3.1 Housing design

The units are ready-to-fit and comprise white plastic housings in which corrosionresistant Schaeffler radial insert ball bearings for the food industry are fitted. The possible combinations can be found in the table of combination options >42| $\implies 24$.

Grub screws locate housing units with integral radial insert ball bearing GYE..-KRR-B-FA107-VA-FD on the shaft. Eccentric locking collars locate housing units with integral radial insert ball bearing GE..-KRR-B-FA107-VA-FD on the shaft

The housings are screw mounted on the adjacent construction. Less stringent tolerances are sufficient for the screw mounting surfaces.

In order to ensure function and reliability under all operating conditions, the bearings and housings are matched to each other with a defined swivel moment after mounting.

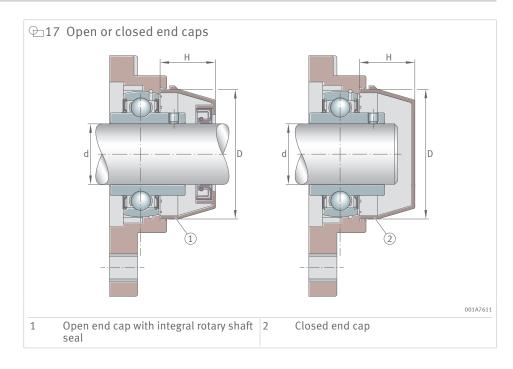
The swivel moment can be requested from Schaeffler.

The lubricant used is approved for food applications to category NSF H1 and meets the quality requirements of FDA 21 CFR 178.3570 in full. Furthermore, the lubricant is certified to halal and kosher standards. The grease also only contains allergen-free ingredients and no components comprising animal or genetically modified organisms.

Design variants

- plummer block housing units with white plastic housings, with radial insert ball bearings made from high-grade steel and with food-grade grease lubrication, and with grub screw or eccentric locking collar for use in the food industry
- flanged housing units with white plastic housings, with radial insert ball bearings made from high-grade steel and with food-grade grease lubrication, and with grub screw or eccentric locking collar for use in the food industry

3.2 Accessories


3.2.1 Bearing end caps

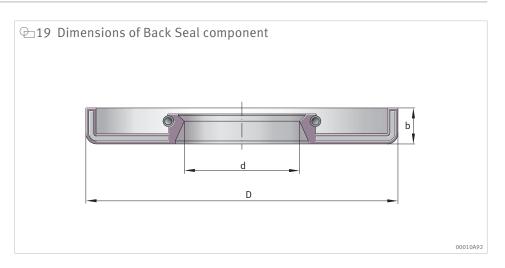
Each housing unit is supplied with a closed, white end cap KASK..-S-G-WHT.

For all units, open white end caps KASK..-S-R-NBR-WHT with an integral rotary shaft seal are available by agreement.

The bearing end caps are made from the plastic Capilene SR 50.

In application testing, the bearing end caps proved resistant to water jets applied at a high water pressure (90 bar). In the test, housings sealed with end caps withstood water jets at a temperature of 80 °C from various angles (0°, 30°, 60°, 90°). The remained in their position on the housings and were not damaged.

 Roaring	and	cane	for	nlactic	housing	unite
Dearing	enu	caps	101	plastic	nousing	units


Designation	d	D	Н	
Closed end cap	Open end cap	mm	mm	mm
KASK04-S-G-WHT	KASK04-S-R-NBR-WHT	20	50	23
KASK05-S-G-WHT	KASK05-S-R-NBR-WHT	25	55	25
KASK06-S-G-WHT	KASK06-S-R-NBR-WHT	30	64	30
KASK07-S-G-WHT	KASK07-S-R-NBR-WHT	35	74,6	32
KASK08-S-G-WHT	KASK08-S-R-NBR-WHT	40	84	37

3.2.2 Back Seal component

For flanged housing units RCJ..-TV-VA-FD and RCJT..-TV-VA-FD, a Back Seal component RWDR..-R-NBR is available, which seals the rear of the housing.

The Back Seal component is made from NBR and has a spring washer made from corrosion-resistant steel, material no. 1.4301. This additional sealing against the environment gives the plastic housing units effective, additional protection against contamination, which extends the operating life of the bearings.

26	Designations	and	dimensions	of Back	Seal	components
	Designations	ana	annensions	or Duck	ocui	componence

Designation	d	b	D	
	mm	mm	mm	
RWDR04-R-NBR	20	6	52	
RWDR05-R-NBR	25	6	62	
RWDR06-R-NBR	30	6	72	
RWDR07-R-NBR	35	6	82	
RWDR08-R-NBR	40	6	88	

3.2.3 Temperature range

Housing units with or without a Back Seal component are suitable for operating temperatures from -30 °C to +100 °C. If bearing end caps are used, the maximum temperature is reduced to +80 °C.

3.3 Materials, corrosion protection, food grade

All further information on the materials used, corrosion resistance and food-grade greasing can be found in the section Radial insert ball bearings >22|2.

We reserve the right to make technical changes, including material changes, as part of the ongoing development.

FDA-compliant materials

The following FDA-compliant materials are used:

■ 27 FDA-compliant materials

Bearing components	Material, designation	FDA directive
Seals	NBR	FDA 21 CFR 177.2600
Grease	Mobile Grease FM222	FDA 21 CFR 178.3570
Housing	PBT-GF20	FDA 21 - CFR 175-178
		FDA 21 CFR 177.1660
End cap	Capilene SR 50	FDA 21 CFR 177.1520(a)(3)(i)(c)3.1a
		FDA 21 CFR 177.1520(b)

The classification of components as FDA-compliant is based on information provided by material manufacturers.

3.4 Lubrication

All further information on the lubrication of plastic housing units can be found in the section Radial insert ball bearings >25|2.3.

3.5 Sealing

All further information on the sealing of plastic housing units can be found in the section Radial insert ball bearings $\geq 26|2.4$.

3.6 Suffixes

■28 Available designs

Suffix	Design	Design
TV	Plastic housing	Standard
VA	Components made from high-grade steel	
FD	Suitable for applications in the food industry	

3.7 Dimensions, tolerances

Information on the dimensions, tolerances and internal clearance of integral radial insert ball bearings can be found in the section Radial insert ball bearings ►28|2.8.

Tolerances

The dimensional tolerances, geometrical tolerances and positional tolerances of plastic housings correspond to DIN 16742.

The permissible shaft tolerance is dependent on the speed, load and the radial insert ball bearing fitted. Shafts of the tolerance classes h6 (E) to h9 (E) can be used. Conventional drawn shafts will suffice for most applications.

The roughness of the shaft must be matched to the tolerance class of the integral radial insert ball bearing. The mean roughness value Ra must not be too high, in order to maintain the interference loss within limits. The shafts must be ground. Guide values as a function of the IT grade can be found in the table.

29	Guide values for mean	roughness Ramax	for ground	bearing seats	(IT grade)

Nominal dimension		Ramax	Ramax				
from	to	IT7	IT6	IT5	IT4		
mm	mm	μm	μm	μm	μm		
_	80	1,6	0,8	0,4	0,2		
80	500	1,6	1,6	0,8	0,4		

Screw mounting surfaces

Recommendations for the screw mounting surfaces are as follows:

- roughness of the screw mounting surface max. Ra 12,5 (Rzmax 63)
- geometrical tolerance and positional tolerance 0,04/100 concave, spherical not permissible

Fixing screws

The screw connection should be designed in accordance with VDI 2230 with a friction coefficient μ = 0,12 (90 %).

High-grade steel screws of grade 80 or better are suitable for fixing. The maximum tightening torques applicable to this screw grade should be observed even if screws of a higher grade are used.

In principle, we recommend that the screw connection should only be tightened to 70 % of the values stated in the standard.

For fixing, hexagonal socket head screws with a coarse pitch full thread in accordance with DIN EN ISO 4017:2022 should be used. The screws should be combined as a minimum with a washer in accordance with DIN EN ISO 7089 or DIN EN ISO 7090.

Screws and accessories for location are not included in the delivery.

All screws and other accessories used for location should be in the high-grade steel version.

3.8 Design and safety guidelines

3.8.1 Load carrying capacity

The load carrying capacity of radial insert ball bearings can be found in the section Radial insert ball bearings $\geq 29|2.9.1$.

Radial load carrying capacity of housings

Plastic housings are suitable for moderate loads. The radial static load carrying capacity $C_{0r\,G}$ of plastic housings and the static load carrying capacity C_{0r} of the radial insert ball bearings is stated in the relevant product tables.

Axial load carrying capacity of housings

The axial operating load of the unit must not exceed the axial load carrying capacity of the housing.

The axial load carrying capacity of plastic housings is $C_{0aG} = 0,25 \cdot C_{0rG}$.

3.8.2 Compensation of angular misalignments

Bearings with a spherical outside surface of the outer ring, fitted in housings with a concave bore, can compensate for static misalignment of the shaft.

Detailed information on the compensation of static misalignments can be found in the section Radial insert ball bearings $\geq 29|2.9.2$.

3.8.3 Speeds

The speed limits are dependent on the load, the clearance between the bearing bore and shaft, and the friction of the seals in the case of bearings with contact seals.

Detailed information on the speed limits can be found in the section Radial insert ball bearings >30|2.9.3.

3.9 Dimensioning

Detailed information on the dimensioning of integral radial insert ball bearings can be found in the section Radial insert ball bearings >31|2.10.

3.10 Minimum load

Detailed information on the minimum loading of integral radial insert ball bearings can be found in the section Radial insert ball bearings > 32|2.11.

3.11 Mounting and dismounting

Observe the detailed guidelines on the mounting and dismounting of housing units and radial insert ball bearings.

Rolling bearings are well-proven precision machine elements for the design of economical and reliable bearing arrangements, which offer high operational security. In order that these products can function correctly and achieve the envisaged operating life without detrimental effect, they must be handled with care.

3.12 Further information

The information on the design of the bearing arrangement, lubrication, mounting and dismounting and on the operation of the bearings provided in the Technical Principles of Catalogue HR 1, Rolling Bearings, must be observed as further information.

Due to their versatile characteristics, Schaeffler housing units are suitable for use in almost all industrial sectors

It is always and fundamentally the responsibility of the designer of a machine to ensure that a malfunction of housing units cannot be hazardous to persons. An unplanned stoppage of the machine should not cause major disruptions in operation. In both cases, it is therefore essential that you contact us before design work is carried out.

HR 1 | Rolling Bearings | https://www.schaeffler.de/std/1D3D

SG 1 | Radial insert ball bearings and housing units | https://www.schaeffler.de/std/1B64

MH 1 | Mounting Handbook | https://www.schaeffler.de/std/1B68

MON 108 | Mounting of Radial Insert Ball Bearings with Spherical Outer Ring in Bearing Housings | https://www.schaeffler.de/std/1FA1

TPI 64 | Corrosion-resistant products |

https://www.schaeffler.de/std/1F37

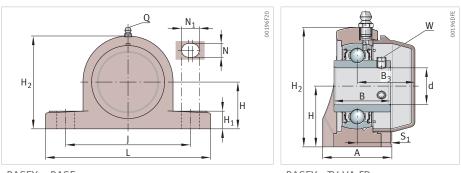
3.13 Product tables

3.13.1 Explanations

A	mm	Base width
A	mm	Housing height
A ₁	mm	Flange thickness
A ₂	mm	Distance to raceway centre
В	mm	Width
B ₁	mm	Width across locking element
B ₃	mm	Distance from housing centre to end of cap
C _{0r}	Ν	Basic static load rating, radial
C _{Or G}	Ν	Basic static load rating, housing
Ca	mm	Distance to lubrication hole
Cr	Ν	Basic dynamic load rating, radial
C _{ur}	Ν	Fatigue limit load, radial
d	mm	Bearing bore diameter
d ₃	mm	Outside diameter of locking collar
f ₀	-	Calculation factor
Н	mm	Distance to shaft axis
Н	mm	Flange height
H ₁	mm	Base height
H ₂	mm	Height
J	mm	Pitch circle diameter of fixing holes
K	-	Fixing hole thread
L	mm	Length
L	mm	Width
L	mm	Total unit height
m	kg or lbs	Mass
Ν	mm	Slot width
Ν	mm	Fixing hole
N ₁	mm	Slot length
Q	-	Threaded connector for lubrication
S ₁	mm	Distance from housing centre to locking collar
V	mm	Housing shoulder diameter
W	mm	Width across flats

3.13.2 Plummer block housing

units, with long base, with grub

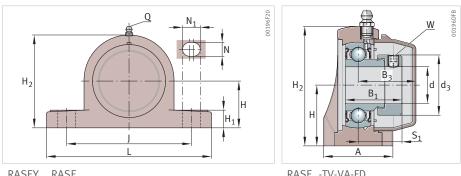

screw

FD design

White plastic housing with long base

With grub screw in inner ring

d	Unit	Housing	Radial insert ball bearing	Cr	C _{0r}	C _{ur}	C _{0r G}	f ₀
mm	-	-	-	Ν	N	Ν	N	-
20	RASEY20-TV-VA-FD	ASE04-TV-WHT	GYE20-KRR-B-FA107-VA-FD	10900	5300	280	7700	13,1
25	RASEY25-TV-VA-FD	ASE05-TV-WHT	GYE25-KRR-B-FA107-VA-FD	11900	6300	335	10000	13,8
30	RASEY30-TV-VA-FD	ASE06-TV-WHT	GYE30-KRR-B-FA107-VA-FD	18700	10700	475	10600	13,8
35	RASEY35-TV-VA-FD	ASE07-TV-WHT	GYE35-KRR-B-FA107-VA-FD	22000	12300	655	10800	13,8
40	RASEY40-TV-VA-FD	ASE08-TV-WHT	GYE40-KRR-B-FA107-VA-FD	24900	14300	800	11100	14



RASEY ..- TV-VA-FD

Η	J	L	A	H ₁	H ₂	Ν	N ₁	В	B ₃	S ₁	Q	W	m
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	-	mm	kg
33,3	95	127	38	14	65,5	11	14	31	31,65	18,3	¹ / ₄ "-28 UNF	2,5	0,3
36,5	105	140	38	14	71	11	14	34,1	34,05	19,8	¹ / ₄ "-28 UNF	2,5	0,37
42,9	119	162	46	17,8	83	14	18	38,1	39,95	22,2	¹ / ₄ "-28 UNF	3	0,69
47,6	127	167	48	18	94	14	18	42,9	44,85	25,4	¹ / ₄ "-28 UNF	3	0,76
49,2	137	184	54	19,5	98	14	18	49,2	51,5	30,2	¹ / ₄ "-28 UNF	4	0,97

3.13.3 Plummer block housing units, with long base, with eccentric locking collarFD designWhite plastic housing with long baseWith eccentric locking collar

d	Unit	Housing	using Radial insert ball bearing C _r		C _{0r}	Cur	C _{0r G}	f ₀
mm	-	-	-	N	N	N	N	-
20	RASE20-TV-VA-FD	ASE04-TV-WHT	GE20-KRR-B-FA107-VA-FD	12840	6650	280	7700	13,1
25	RASE25-TV-VA-FD	ASE05-TV-WHT	GE25-KRR-B-FA107-VA-FD	14020	7880	335	10000	13,8
30	RASE30-TV-VA-FD	ASE06-TV-WHT	GE30-KRR-B-FA107-VA-FD	19460	11310	475	10600	13,8
35	RASE35-TV-VA-FD	ASE07-TV-WHT	GE35-KRR-B-FA107-VA-FD	25670	15300	655	10800	13,8
40	RASE40-TV-VA-FD	ASE08-TV-WHT	GE40-KRR-B-FA107-VA-FD	29520	18140	800	11100	14

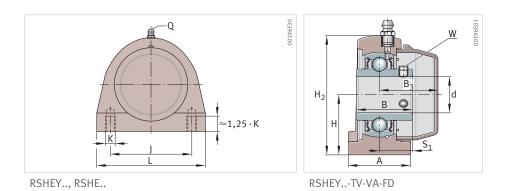
RASEY.	., R	ASI	

RASE ..- TV-VA-FD

Η	J	L	Α	H ₁	H ₂	N	N ₁	B ₁	B ₃	S ₁	Q	d ₃	W	m
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	-	mm	mm	kg
33,3	95	127	38	14,2	65,5	11	14	31	31,65	24,1	¹ / ₄ "-28 UNF	33,3	3	0,3
36,5	105	140	38	14,5	71	11	14	31	34,05	23,5	¹ / ₄ "-28 UNF	38,1	3	0,35
42,9	119	162	46	17,8	83	14	18	35,7	39,95	27,7	¹ / ₄ "-28 UNF	44,5	3	0,55
47,6	127	167	48	18	94	14	18	38,9	44,85	30,4	¹ / ₄ "-28 UNF	55,6	3	0,8
49,2	137	184	54	19,5	98	14	18	43,7	51,5	34,7	¹ / ₄ "-28 UNF	60,3	4	0,99

3.13.4 Plummer block housing

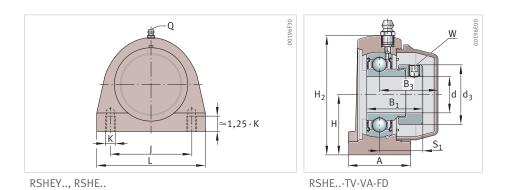
units, with short base, with grub


screw

FD design

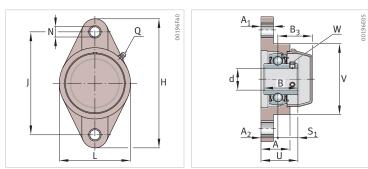
White plastic housing with short base

With grub screw in inner ring


d	Unit	Housing	Radial insert ball bearing	Cr	C _{0r}	Cur	C _{0rG}	f ₀
mm	-	-	-	N	N	N	N	-
20	RSHEY20-TV-VA-FD	SHE04-TV-WHT	GYE20-KRR-B-FA107-VA-FD	10900	5300	280	6900	13,1
25	RSHEY25-TV-VA-FD	SHE05-TV-WHT	GYE25-KRR-B-FA107-VA-FD	11900	6300	335	7000	13,8
30	RSHEY30-TV-VA-FD	SHE06-TV-WHT	GYE30-KRR-B-FA107-VA-FD	16700	9000	475	6500	13,8
35	RSHEY35-TV-VA-FD	SHE07-TV-WHT	GYE35-KRR-B-FA107-VA-FD	22000	12300	655	8000	13,8
40	RSHEY40-TV-VA-FD	SHE08-TV-WHT	GYE40-KRR-B-FA107-VA-FD	24900	14300	800	9100	14

Η	J	L	A	H ₂	К	В	B ₃	S ₁	Q	W	m
mm	mm	mm	mm	mm	-	mm	mm	mm	-	mm	kg
33,3	50,8	72,8	34,5	66	M8	31	32,35	18,3	¹ / ₄ "-28 UNF	2,5	0,27
36,5	50,8	76,2	39,5	73,5	M10	34,1	35,05	19,8	¹ / ₄ "-28 UNF	2,5	0,37
42,9	76,2	101	42,5	84	M10	38,1	41,25	22,2	¹ / ₄ "-28 UNF	3	0,52
47,6	82,6	110	47,5	95	M10	42,9	45,05	25,4	¹ / ₄ "-28 UNF	3	0,74
49,2	88,9	120	48	100,5	M12	49,2	51,4	30,2	¹ / ₄ "-28 UNF	4	0,91

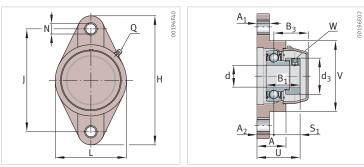
3.13.5 Plummer block housing units, with short base, with eccentric locking collarFD designWhite plastic housing with short baseWith eccentric locking collar


d	Unit	Housing	Housing Radial insert ball bearing C _r		C _{0r}	Cur	C _{0r G}	f ₀
mm	-	-	-	Ν	Ν	N	N	-
20	RSHE20-TV-VA-FD	SHE04-TV-WHT	GE20-KRR-B-FA107-VA-FD	12840	6650	280	6900	13,1
25	RSHE25-TV-VA-FD	SHE05-TV-WHT	GE25-KRR-B-FA107-VA-FD	14020	7880	335	7000	13,8
30	RSHE30-TV-VA-FD	SHE06-TV-WHT	GE30-KRR-B-FA107-VA-FD	19460	11310	475	6500	13,8
35	RSHE35-TV-VA-FD	SHE07-TV-WHT	GE35-KRR-B-FA107-VA-FD	25670	15300	655	8000	13,8
40	RSHE40-TV-VA-FD	SHE08-TV-WHT	GE40-KRR-B-FA107-VA-FD	29520	18140	800	9100	14

Η	J	L	A	H ₂	К	B ₁	B ₃	S ₁	Q	d ₃	W	m
mm	mm	mm	mm	mm	-	mm	mm	mm	-	mm	mm	kg
33,3	50,8	72,8	34,5	66	M8	31	32,35	24	¹ / ₄ "-28 UNF	33,3	3	0,28
36,5	50,8	76,2	39,5	73,5	M10	31	35,05	23,5	¹ / ₄ "-28 UNF	38,1	3	0,35
42,9	76,2	101	42,5	84	M10	35,7	41,25	27,7	¹ / ₄ "-28 UNF	44,5	3	0,52
47,6	82,6	110	47,5	95	M10	38,9	45,05	30,4	¹ / ₄ "-28 UNF	55,6	3	0,79
49,2	88,9	120	48	100,5	M12	43,7	51,4	34,7	¹ / ₄ "-28 UNF	60,3	4	0,93

3.13.6 Two-bolt flanged housing units, narrow version, with grub screwFD designWhite plastic housing, narrow versionWith grub screw in inner ring

d	Unit	Housing	Radial insert ball bearing	Cr	C _{0r}	C _{ur}	C _{0r G}	f ₀
mm	-	-	-	N	N	Ν	Ν	-
20	RCJTY20-TV-VA-FD	CJT04-TV-WHT	GYE20-KRR-B-FA107-VA-FD	10900	5300	280	8500	13,1
25	RCJTY25-TV-VA-FD	CJT05-TV-WHT	GYE25-KRR-B-FA107-VA-FD	11900	6300	335	11100	13,8
30	RCJTY30-TV-VA-FD	CJT06-TV-WHT	GYE30-KRR-B-FA107-VA-FD	16700	9000	475	14200	13,8
35	RCJTY35-TV-VA-FD	CJT07-TV-WHT	GYE35-KRR-B-FA107-VA-FD	22000	12300	655	14900	13,8
40	RCJTY40-TV-VA-FD	CJT08-TV-WHT	GYE40-KRR-B-FA107-VA-FD	24900	14300	800	14900	14


RCJTY.., RCJT..

RCJTY..-TV-VA-FD

Η	J	L	Α	A ₁	A ₂	Ν	В	B ₃	S ₁	U	V	Q	W	m
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	_	mm	kg
114	90	64,8	26,5	11,4	15,4	11	31	31,4	18,3	33,7	64,8	¹ / ₄ "-28 UNF	2,5	0,25
130	99	70	29,1	13,5	17	11	34,1	34,1	19,8	37,1	70	¹ / ₄ "-28 UNF	2,5	0,33
148	117	80	30,5	13,3	19	11	38,1	38,5	22,2	41,2	80	¹ / ₄ "-28 UNF	3	0,45
163	130	90	32,8	16,1	18	13	42,9	43,6	25,4	43,4	90	¹ / ₄ "-28 UNF	3	0,65
175	144	100	37,5	20	21,5	14	49,2	49,5	30,2	51,7	100	¹ / ₄ "-28 UNF	4	0,86

3.13.7 Two-bolt flangedhousing units, narrow version,with eccentric locking collarFD designWhite plastic housing, narrow versionWith eccentric locking collar

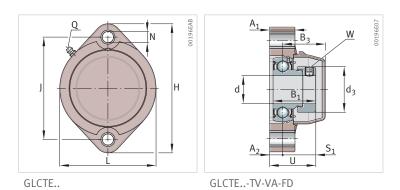
d	Unit	Housing	Radial insert ball bearing	Cr	C _{0r}	C _{ur}	C _{0rG}	f ₀
mm	-	-	-	N	N	N	N	-
20	RCJT20-TV-VA-FD	CJT04-TV-WHT	GE20-KRR-B-FA107-VA-FD	12840	6650	280	8500	13,1
25	RCJT25-TV-VA-FD	CJT05-TV-WHT	GE25-KRR-B-FA107-VA-FD	14020	7880	335	11100	13,8
30	RCJT30-TV-VA-FD	CJT06-TV-WHT	GE30-KRR-B-FA107-VA-FD	19460	11310	475	14200	13,8
35	RCJT35-TV-VA-FD	CJT07-TV-WHT	GE35-KRR-B-FA107-VA-FD	25670	15300	655	14900	13,8
40	RCJT40-TV-VA-FD	CJT08-TV-WHT	GE40-KRR-B-FA107-VA-FD	29520	18140	800	14900	14

RCJT..-TV-VA-FD

Η	J	L	Α	A ₁	A ₂	N	B ₁	B ₃	S ₁	U	V	Q	d ₃	W	m
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	-	mm	mm	kg
114	90	64,8	26,5	11,4	15,4	11	31	31,4	24	39,4	64,8	¹ / ₄ "-28 UNF	33,3	3	0,26
130	99	70	29,1	13,5	17	11	31	34,1	23,5	40,5	70	¹ / ₄ "-28 UNF	38,1	3	0,32
148	117	80	30,5	13,3	19	11	35,7	38,5	27,7	46,7	80	¹ / ₄ "-28 UNF	44,5	3	0,45
163	130	90	32,8	16,1	18	13	38,9	43,6	30,4	48,4	90	¹ / ₄ "–28 UNF	55,6	3	0,69
175	144	100	37,5	20	21,5	14	43,7	49,5	34,7	56,2	100	¹ / ₄ "-28 UNF	60,3	4	0,88

3.13.8 Two-bolt flanged

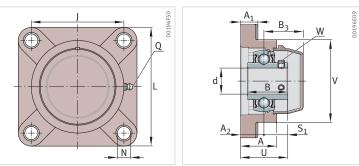
housing units, wide version


FD design

White plastic housing, wide version

Radial insert ball bearing with grub

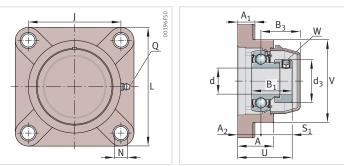
screw or eccentric locking collar


d	Unit	Housing	Radial insert ball bearing	Cr	C _{0r}	C _{ur}	C _{0rG}	f ₀
mm	-	-	-	N	N	N	N	_
20	GLCTE20-TV-VA-FD	GLCTE04-TV-WHT	GE20-KRR-B-FA107-VA-FD	12840	6650	280	9600	13,1
25	GLCTE25-TV-VA-FD	GLCTE05-TV-WHT	GE25-KRR-B-FA107-VA-FD	14020	7880	335	9400	13,8
30	GLCTE30-TV-VA-FD	GLCTE06-TV-WHT	GE30-KRR-B-FA107-VA-FD	19460	11310	475	12000	13,8
35	GLCTE35-TV-VA-FD	GLCTE07-TV-WHT	GE35-KRR-B-FA107-VA-FD	25670	15300	655	12600	13,8
40	GLCTE40-TV-VA-FD	GLCTE08-TV-WHT	GE40-KRR-B-FA107-VA-FD	29520	18140	800	12800	14

Η	J	L	A ₁	A ₂	N	B ₁	B ₃	S ₁	U	Q	d ₃	W	m
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	-	mm	mm	kg
90,5	71,4	66,5	18,4	9,5	9,2	31,1	30,8	24	33,6	¹ / ₄ "-28 UNF	33,3	3	0,25
97	76,2	91	18,4	9,9	9,2	31	33,5	23,5	33,4	¹ / ₄ "-28 UNF	38,1	3	0,29
112	90,5	84	20,5	11,4	11	35,7	38,6	27,7	39,1	¹ / ₄ "-28 UNF	44,5	3	0,4
126	100	94	22,5	12,4	11	38,9	41,1	30,4	42,8	¹ / ₄ "-28 UNF	55,6	3	0,66
150	119	100	24	13,5	14	43,7	47,5	34,7	48,2	¹ / ₄ "-28 UNF	60,3	4	0,82

3.13.9 Four-bolt flangedhousing units, with grub screwFD designWhite plastic housingWith grub screw in inner ring

d	Unit	Housing	Radial insert ball bearing	Cr	C _{0r}	C _{ur}	C _{0rG}	f ₀
mm	-	-	-	N	Ν	N	Ν	_
20	RCJY20-TV-VA-FD	CJ04-TV-WHT	GYE20-KRR-B-FA107-VA-FD	10900	5300	280	10200	13,1
25	RCJY25-TV-VA-FD	CJ05-TV-WHT	GYE25-KRR-B-FA107-VA-FD	13400	7500	335	12100	13,8
30	RCJY30-TV-VA-FD	CJ06-TV-WHT	GYE30-KRR-B-FA107-VA-FD	16700	9000	475	17700	13,8
35	RCJY35-TV-VA-FD	CJ07-TV-WHT	GYE35-KRR-B-FA107-VA-FD	22000	12300	655	18500	13,8
40	RCJY40-TV-VA-FD	CJ08-TV-WHT	GYE40-KRR-B-FA107-VA-FD	24900	14300	800	19200	14


RCJY.., RCJ..

RCJY..-TV-VA-FD

J	L	Α	A ₁	A ₂	N	В	B ₃	S ₁	U	V	Q	W	m
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	-	mm	kg
63,5	87	27,8	13,4	18	11	31	30,2	18,3	36,3	63,5	¹ / ₄ "-28 UNF	2,5	0,31
70	94,5	27,9	14,3	17	11	34,1	33,1	19,8	36,8	70	¹ / ₄ "-28 UNF	2,5	0,39
83	107	31,5	14,3	19,2	11	38,1	39,5	22,2	41,4	80	¹ / ₄ "-28 UNF	3	0,52
92	117	34,8	15,5	21,5	13	42,9	42,1	25,4	46,9	90	¹ / ₄ "-28 UNF	3	0,73
102	130	37,5	17	23	14	49,2	48	30,2	53,2	99	¹ / ₄ "-28 UNF	4	0,97

3.13.10 Four-bolt flangedhousing units, with eccentriclocking collarFD designWhite plastic housingWith eccentric locking collar

d	Unit	Housing	Radial insert ball bearing	Cr	C _{0r}	C _{ur}	C _{0rG}	f ₀
mm	-	-	-	N	Ν	N	Ν	-
20	RCJ20-TV-VA-FD	CJ04-TV-WHT	GE20-KRR-B-FA107-VA-FD	12840	6650	280	10200	13,1
25	RCJ25-TV-VA-FD	CJ05-TV-WHT	GE25-KRR-B-FA107-VA-FD	14020	7880	335	12100	13,8
30	RCJ30-TV-VA-FD	CJ06-TV-WHT	GE30-KRR-B-FA107-VA-FD	19460	11310	475	17700	13,8
35	RCJ35-TV-VA-FD	CJ07-TV-WHT	GE35-KRR-B-FA107-VA-FD	25670	15300	655	18500	13,8
40	RCJ40-TV-VA-FD	CJ08-TV-WHT	GE40-KRR-B-FA107-VA-FD	28500	17200	800	19200	14

RCJY.., RCJ..

RCJ..-TV-VA-FD

J	L	Α	A ₁	A ₂	N	B ₁	B ₃	S ₁	U	V	Q	d ₃	W	m
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	-	mm	mm	kg
63,5	87	27,8	13,4	18	11	31	30,2	24	42	63,5	¹ / ₄ "-28 UNF	33,3	3	0,31
70	94,5	27,9	14,3	17	11	31	33,1	23,5	40,5	70	¹ / ₄ "-28 UNF	38,1	3	0,38
83	107	31,5	14,3	19,2	11	35,7	39,5	27,7	46,9	80	¹ / ₄ "-28 UNF	44,5	3	0,52
92	117	34,8	15,5	21,5	13	38,9	42,1	30,4	51,9	90	¹ / ₄ "-28 UNF	55,6	3	0,77
102	130	37,5	17	23	14	43,7	48	34,7	57,7	99	¹ / ₄ "-28 UNF	60,3	4	0,99

00196E08

Schaeffler Technologies AG & Co. KG

Georg-Schäfer-Straße 30 97421 Schweinfurt Germany www.schaeffler.de/en info.de@schaeffler.com

In Germany: Phone 0180 5003872 From other countries: Phone +49 9721 91-0 All information has been carefully compiled and checked by us, but we cannot guarantee complete accuracy. We reserve the right to make corrections. Therefore, please always check whether more up-to-date or amended information is available. This publication supersedes all deviating information from older publications. Printing, including excerpts, is only permitted with our approval. © Schaeffler Technologies AG & Co. KG TPI 261 / 04 / en-GB / DE / 2024-04